物理高考復習訣竅
(1)回歸課本,重視基礎知識和基本技能的強化訓練。
俗話說:萬變不離其宗。高考題再怎么靈活,它都要緊扣課本、圍繞考綱來命題。只要我們的基礎知識牢靠了,基本技能掌握了,以課本內容為出發點,我們就可以從容面對任何形式的高考!所以,在首輪復習中,我們務必要加強雙基訓練。要在理解的基礎上掌握物理學的基本概念和規律,特別是對于那些自己覺得比較抽象和陌生的知識點,一定要從弄清為什么要引入相應概念?如何引入?怎樣定義?有何含義?有哪些典型的應用?等幾個方面的問題來強化對相關知識點的理解。就這一點而言,考慮到目前學生的時間和精力的分配問題,我們在一輪復習階段要多練選擇題,因為選擇題相比而言涉及的知識點比較單一,對及時鞏固相關的知識點很有幫助,而且也不費時間,效率也就比較高。
(2)夯實基礎知識、注意主干知識。
盡管近幾年來教材在變,大綱在變,高考也在變,但基本概念、基本規律和基本思路不會變,它們是高考物理考查的主要內容和重點內容,而主干知識又是物理知識體系中的最重要的知識,學好主干知識是學好物理的關鍵,是提高能力的基礎。在備考復習中,不僅要求記住這些知識的內容,而且還要加強理解,熟練運用,既要知其然,又要知其所以然.要立足于本學科知識,把握好要求掌握的知識點的內涵和外延,明確知識點之間的內在聯系,形成系統的知識網絡。新課程知識應用性較強,與素質教育的教改目標更加接近,容易成為命題點。
(3)注重學科思想方法的掌握。
學習物理的目的,就是要在掌握知識的同時,領悟其中的科學方法,培養獨立思考和仔細審題的習慣和能力。為什么不少學生感到物理課聽起來容易,自己做起來難。問題就在于他們沒有掌握物理學科科學的研究方法,而是死套公式。為此,在物理復習過程中要適時地、有機地將科學方法如:理想化、模型法、整體法、隔離法、圖象法、逆向思維法、演繹法、歸納法、假設法、排除法、對稱法、極端思維法、等效法、類比和遷移法等進行歸納、總結,使之有利于消化吸收,領悟其精髓,從而提高解題能力和解題技巧。
(4)研究題型,分類歸檔,注意解題方法和技巧的訓練和歸納。
高考把能力考查放在首位,就必須對知識點考查的能力要求上不斷翻新變化。很多試題對同一知識點的考查,有時是考查理解能力,有時卻考查推理能力或分析綜合能力,或以新穎的情景或新的設問角度考查同一知識點的。我們在本輪復習中應站在科學的、有效的角度上,研究考試,分析題型,精選例題,組合習題注重一題多解,一題多變的訓練,提高以不變應萬變的能力。
提高物理成績的竅門
想學好物理一定要養成提前預習的習慣,每次在上課之前一定要認認真真的預習,這樣才可以知道哪里是自己不懂的知識點,等到課堂中老師上課的時候重點聽這一部分。
課堂中一定要聚精會神的聽課,可能你的稍微不留神就會錯過一個重要的知識點,物理知識點是一個套著一個的,所以每個知識點都要認真聽講。
課后的復習是很重要的,在課堂上聽懂是一回事,如果不及時復習會很快遺忘,最好把老師上課教的例題自己給做一遍,這樣才是掌握了上課老師所教的知識點。
大量的習題是快速提高物理的一個必要的途徑,可以買一兩本有用的習題講解,平時多做這些題,如果有不懂的可以參考講解,然后自己再做一便。大量的做題會使我們碰到各種各樣的知識點,認真掌握他們吧。
要養成記錄錯題的習慣,這是學好每門課都必須要做的,物理也不例外。錯題肯定是我們沒有學好的地方,常把錯題拿出來看看,在錯題中多總結思考,這有助于我們快速提高物理成績。
學好高中物理的技巧
1、學會聯系生活。高中物理這門學科是一門非常實用的學科,它不像政治、歷史等學科需要大量的背誦和記憶,想要不費吹灰之力學習好高中物理,要善于聯系實際,高中物理這門學科的知識遍布于我們的生活,我們要學會在學習物理的過程中聯系生活,在生活的過程中觀察物理現象,才能夠。讓學習物理成為一件有趣的事情。
2、高中物理學習要會審題,理解題意是正確解答高中物理習題的前提,要迅速地理解題意,必須抓住題目中的關鍵字句,找出需要的已知條件和所求的物理量之間的關系,在必要時畫出草圖幫助理解題意。
3、公式理解記憶。學生在高中物理的學習中,會接觸很多的高中物理公式,而且很多的公式非常的相近,學生要想學好高三物理,想要提高自己的成績,就必須要對這些物理公式理解性的記憶。相同的符號可能代表不同的物理量,就需要這些學生把這些高三物理公式理解性的記憶之后,才能夠靈活地應用于物理題目中。
物理高考答題技巧口訣
力的作用效果
時間積累動量增,空間積累增動能,瞬間產生加速度,改變狀態或變形.
動量定理·動能定理
動量動能二定理,解起題來特容易,動量定理求時間,動能定理求位移.
彈簧振子振動
彈簧振子來振動,簡諧運動最典型.a隨回復力變化,方向始終指平衡,大小位移成正比,位移特指對平衡注,速度與a變化反,這個減時那個增,動能勢能互轉化,周期變化且守恒.
高考物理知識點
直線運動
平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as
中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}
實驗用推論Δs=aT2 {Δs為連續相鄰相等時間(T)內位移之差}
主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。
自由落體運動
初速度Vo=0 2.末速度Vt=gt
下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh
自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規律;
豎直上拋運動
位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起)
往返時間t=2Vo/g (從拋出落回原位置的時間)
平拋運動
水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt
水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2
運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)
合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
勻速圓周運動
線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
周期與頻率:T=1/f 6.角速度與線速度的關系:V=ωr
角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)
主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑?:米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
萬有引力
開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決于中心天體的質量)}
萬有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它們的連線上)
天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}
衛星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}
第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}
常見的力
重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用于地球表面附近)
胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(N/m),x:形變量(m)}
滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N)}
靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
萬有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它們的連線上)
靜電力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它們的連線上)
電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
安培力F=BILsinθ (θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)
洛侖茲力f=qVBsinθ (θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)
電場
兩種電荷、電荷守恒定律、元電荷:(e=1.60×10-19C);帶電體電荷量等于元電荷的整數倍
庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N?m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}
電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}
真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}
勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}
電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
電勢能的變化ΔEAB=EB-EA {帶電體在電場中從A位置到B位置時電勢能的差值}
電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等于電場力做功的負值)
電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數)
常見電容器〔見第二冊P111〕
帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平 垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
拋運動 平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
