矩形數(shù)學(xué)教案及教學(xué)反思
矩形數(shù)學(xué)教案
教法建議
根據(jù)本節(jié)內(nèi)容的特點(diǎn)和與平行四邊形的關(guān)系,建議教師在教學(xué)過(guò)程中注意以下問(wèn)題:
1.矩形的知識(shí),學(xué)生在小學(xué)時(shí)接觸過(guò)一些,可由小學(xué)學(xué)過(guò)的知識(shí)作為引入。
2.矩形在現(xiàn)實(shí)中的實(shí)例較多,在講解矩形的性質(zhì)和判定時(shí),教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實(shí)例來(lái)進(jìn)行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識(shí).
3. 如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材145頁(yè)圖4-30所示,制作一個(gè)平行四邊形作為教學(xué)過(guò)程中的道具,既增強(qiáng)了學(xué)生的動(dòng)手能力和參與感,有在教學(xué)中有切實(shí)的體例,使學(xué)生對(duì)知識(shí)的掌握更輕松些.
4. 在對(duì)性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個(gè)學(xué)生分別對(duì)事先準(zhǔn)備后的圖形進(jìn)行邊、角、對(duì)角線的測(cè)量,然后在組內(nèi)進(jìn)行整理、歸納.
5. 由于矩形的性質(zhì)定理證明比較簡(jiǎn)單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來(lái)進(jìn)行具體的證明.
6.在矩形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。
矩形教學(xué)設(shè)計(jì)
教學(xué)目標(biāo)
1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說(shuō)出矩形的四個(gè)角都是直角和矩形的的對(duì)角線相等的性質(zhì);能推出直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)。
2.能運(yùn)用以上性質(zhì)進(jìn)行簡(jiǎn)單的證明和計(jì)算。
此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會(huì)特殊與一般的關(guān)系,滲透集合的思想,培養(yǎng)學(xué)生辨證唯物主義觀點(diǎn)。
引導(dǎo)性材料
想一想:一般四邊形與平行四邊形之間的相互關(guān)系?在圖4.5-l的圓圈中填上“四邊形”和“平行四邊形”的字樣來(lái)說(shuō)明這種關(guān)系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質(zhì);具有一些特殊的性質(zhì)。
小學(xué)里已學(xué)過(guò)長(zhǎng)方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個(gè)角都是直角(小學(xué)里已學(xué)過(guò))等特殊性質(zhì),那么,如果在圖4.5-1中再畫(huà)一個(gè)圈表示矩形,這個(gè)圈應(yīng)畫(huà)在哪里?
(讓學(xué)生初步感知矩形與平行四邊形的從屬關(guān)系。)
演示:用四根木條制作一個(gè)平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當(dāng)平行四邊形的一個(gè)內(nèi)角由銳角變?yōu)殁g角的過(guò)程中,會(huì)發(fā)生怎樣的特殊情況,這時(shí)的圖形是什么圖形(矩形)。
問(wèn)題1:從上面的演示過(guò)程,可以發(fā)現(xiàn):平行四邊形具備什么條件時(shí),就成了矩形?
說(shuō)明與建議:教師的演示應(yīng)充分展現(xiàn)變化過(guò)程,從而讓學(xué)生深切地感受到短形是無(wú)數(shù)個(gè)平行四邊形中的一個(gè)特例,同時(shí),又使學(xué)生能正確地給出矩形的定義。
問(wèn)題2:矩形是特殊的平行四邊形,它除了“有一個(gè)角是直角”以外,還可能具有哪些平行四邊形所沒(méi)有的特殊性質(zhì)呢?
說(shuō)明與建議:讓學(xué)生分組探索,有必要時(shí),教師可引導(dǎo)學(xué)生,根據(jù)研究平行四邊形獲得的經(jīng)驗(yàn),分別從邊、角、對(duì)角線三個(gè)方面探索矩形的特性,還可提醒學(xué)生,這種探索的基礎(chǔ)是矩形“有一個(gè)角是直角”矩形的四個(gè)角都相等(矩形性質(zhì)定理1),要學(xué)生給以證明(即課本例1后練習(xí)第1題)。
學(xué)生能探索得出“矩形的鄰邊互相垂直”的特性,教師可作說(shuō)明:這與矩形的四個(gè)角是直角本質(zhì)上是一致的,所以不必另列為一個(gè)性質(zhì)。
學(xué)生探索矩形的四條對(duì)角線的大小關(guān)系時(shí),如有困難,可引導(dǎo)學(xué)生測(cè)量并比較矩形兩條對(duì)角線的長(zhǎng)度,然后加以證明,得出性質(zhì)定理2。
問(wèn)題3:矩形的一條對(duì)角線把矩形分成兩個(gè)直角三角形,矩形的對(duì)角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質(zhì)?
說(shuō)明與建議:(1)讓學(xué)生先觀察圖4.5-3,并議論猜想,如學(xué)生有困難,教師可引導(dǎo)學(xué)生觀察圖中的一個(gè)直角三角形(如Rt△ABC),讓學(xué)生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關(guān)系,然后讓學(xué)生自己給出如下證明:
證明:在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AC=BD(矩形的對(duì)角線相等)。
,AO=CO ∴在Rt△ABC中,BO是斜邊AC上的中線,且 。∴直角三角形斜邊上的中線等于斜邊的一半。
矩形教學(xué)反思
《矩形的性質(zhì)》是人教版八年級(jí)數(shù)學(xué)第十八章的內(nèi)容。本節(jié)課我以“一個(gè)活動(dòng)的平行四邊形變形為矩形的過(guò)程”的演示引入課題,將學(xué)生視線集中在數(shù)學(xué)圖形上,思維集中在數(shù)學(xué)思考上,更好地突出了觀察的對(duì)象,使學(xué)生容易把握問(wèn)題的本質(zhì),真實(shí)、自然、和諧,體現(xiàn)了數(shù)學(xué)學(xué)習(xí)的內(nèi)在需要,加強(qiáng)了學(xué)生對(duì)知識(shí)之間的理解和把握,取得了良好的教學(xué)效果。
而后平行四邊形變形為矩形的過(guò)程的演示;同時(shí)舉例生活中給人以矩形形象物體;給學(xué)生一個(gè)感性認(rèn)知。學(xué)生畫(huà)矩形;學(xué)生探究矩形性質(zhì)時(shí)通過(guò)學(xué)生主動(dòng)觀察、猜想、測(cè)量、交流、歸納、并驗(yàn)證等數(shù)學(xué)活動(dòng);從而使學(xué)生形成對(duì)矩形的性質(zhì)的理解和有效的學(xué)習(xí)策略,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般認(rèn)識(shí)的對(duì)矩形的性質(zhì)研究,得出結(jié)論,并讓所有的學(xué)生用推理的形式給以證明。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好思維品質(zhì)的形成有重要作用總之,本節(jié)課的設(shè)計(jì)的每個(gè)環(huán)節(jié)都是以學(xué)生為主體,充分體現(xiàn)新課標(biāo)的理念,對(duì)于新知識(shí)的獲取能夠建立在學(xué)生已有的知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上,讓學(xué)生自己動(dòng)手探究完成,并能體會(huì)到自己的探索是有意義、有價(jià)值的能培養(yǎng)他們?cè)趯W(xué)習(xí)上的自信心,也便于激發(fā)他們對(duì)學(xué)習(xí)的濃厚興趣。另外,學(xué)生對(duì)自己探究出的結(jié)論,記憶也會(huì)更加深刻久遠(yuǎn),理解也更加滲透到位。這樣一種教學(xué)方式,更加有助于學(xué)生完善學(xué)習(xí)過(guò)程,學(xué)生的探索創(chuàng)新思維、創(chuàng)新精神和創(chuàng)造能力將獲得極大的提高。
本節(jié)課不足之處:
(1)在“想一想”出示“怎樣由對(duì)角線的關(guān)系判別中點(diǎn)四邊形?”這個(gè)問(wèn)題后,只給學(xué)生討論,沒(méi)有花費(fèi)時(shí)間去證明以及做練習(xí),造成課后作業(yè)錯(cuò)誤比較多。
(2)例題后的總結(jié)語(yǔ)句太少,這也是我聽(tīng)老教師課后最大的體會(huì)。在以后的教學(xué)中必須注重習(xí)題前后的分析與總結(jié),這一部分有益于學(xué)生知識(shí)的掌握。
矩形數(shù)學(xué)教案及反思相關(guān)
